The water content of a newsprint sheet is an important component of the newsprint furnish and one which exerts a strong influence on both the mechanical and printing properties of the sheet.

Newsprint, like other grades of paper, is formed from a suspension of wood fibres in water with concentrations typically between 100 and 200 kg of water per 1 kg of fibre. In the paper machine the water is removed by centrifugal force, suction, pressing and by heated cylinders in the drying section of the machine. In the case of newsprint, the water content of the sheet after the final drying or calendaring stage can range mainly between 5 and 10% depending upon the materials used and the capabilities of each mill and each paper machine within that mill.

To the printer, the moisture content of a newsprint sheet is a highly significant parameter from the point of view of runnability. Experience has shown that the lower the moisture content, the greater is the risk of web breaks due to a reduction in the elasticity of the sheet, i.e. a lower ability to tolerate the rapid and variable stresses that constantly occur on high speed printing presses. Furthermore a dry sheet, i.e. one with a moisture content between 5 and 7%, is more apt to generate static electricity which makes web control more difficult and causes fibre build-up on plates and blankets, resulting in a lower print quality and an increased risk of web breaks. Sheet compressibility increases as the moisture content increases, and this contributes to better printability. Too high a moisture content, however, can have unfavourable consequences. It increases the risk of blackening in the calendering operation in the paper mill. In the pressroom, if the moisture content of the paper is not in equilibrium with the relative humidity this can result in runnability and printability problems. The disadvantages of a high moisture content may be greater in web offset and dilitho printing than in letterpress printing. At each printing couple in a blanket-to-blanket web offset unit printing on each side of the sheet, about 1% additional moisture is introduced into the newsprint web. In four-colour printing, a further 4% of moisture can thus be added to the sheet. This can influence press performance and runnability, particularly at the folder, and cause register problems since the stretch of the sheet between units becomes difficult to control.

As with grammage, wide variations in moisture content about the mean value can influence press performance and may be a cause for concern to the printer. If significant variations occur between successive reels or across individual reels, press performance will suffer.